
International Journal of Management, IT & Engineering
Vol. 14 Issue 12, December 2024,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

1 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Kubernetes Essentials: The Backbone of Modern Container

Orchestration

Sankara Aditya Sarma Garimella

Srivenkatesh Dudala

 Abstract

 The rise of microservices has caused an increase in the usage of container

technologies because the containers offer the perfect host for small

independent applications like microservices. Managing containers across

multiple environments using scripts and custom-made tools can quickly

become complex and sometimes even unmanageable. That specific scenario

has led to the need for container orchestration technologies. Kubernetes is

one such container orchestration technology, and this paper explains the

critical components, architecture, and K8s key features. It also provides a

demo application setup with K8s components in a local minibuke cluster.

Keywords:

Kubernetes;

Containers;

Microservices;

K8s;

Orchestration; Copyright © 2024 International Journals of Multidisciplinary Research

Academy.All rights reserved.

Author correspondence:

Sankara Aditya Sarma Garimella,

M.S. Bioinformatics, The University of Texas at El Paso

Application Engineer, DFS Corporate Services, LLC, Texas, USA

Email: adi.garimella@gmail.com

Srivenkatesh Dudala

Bachelor Of Engineering, Andhra University, India

Technical Program Manager, Amazon.Com Services, LLC, Texas, USA

Email: venkateshdudala@gmail.com

1. Introduction

Kubernetes is an open-source container orchestration framework designed to manage containers

from Docker or another technology. Kubernetes assists in managing applications composed of hundreds or

even thousands of containers and helps manage them across various environments, such as physical

machines, virtual machines, cloud environments, and hybrid deployment environments.

It offers the following critical features for applications deployed in the K8s cluster

 High Availability:The application has no downtime and is always accessible to users.

 Scalability: The application demonstrates high performance with quick load times, ensuring users

experience very high response rates.

 Disaster Recovery: In case of infrastructure issues like losing data or the failure of servers or data

centers, the infrastructure must include a reliable mechanism to retrieve and restore data to its most

recent state. This ensures that the application doesn't lose any data and allows the containerized

application to resume from its latest state after recovery, maintaining continuity and minimizing

downtime.

mailto:adi.garimella@gmail.com
mailto:venkateshdudala@gmail.com

 ISSN: 2249-0558Impact Factor: 7.119

2 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

2. Kubernetes Components

 Pod: A pod is a fundamental component or smallest unit of Kubernetes. It is an abstraction over a

container. It creates a running environment similar to a docker container, with a layer on top of the

container for abstracting away the container run-time so that it can be replaced. The best practice is

to run one container per pod, although you can run multiple containers in one pod.

 K8s Virtual Network:Kubernetes offers an out-of-the-box virtual network, meaning each pod gets

its private IP address, and pods can communicate using this IP address. It is important to note that

these pods are ephemeral, meaning they can crash and spin up easily for many reasons, including

resource limitations. Pods will get a new IP address up on re-creation, which is inconvenient

because other pods referring to this IP address need to be adjusted after every pod restart.

 Service:A service is a static or permanent IP address that can be assigned to each pod. The service

and pod have independent lifecycles, so even if the pod stops running, the service's IP address

remains unchanged. Therefore, there's no need to update the IP address in other pods where it's

referenced. It provides static IP address and acts as a load balancer, forwarding the request to the

least busy pod.

 Ingress: Ingress helps users access an application using a user-friendly URL, i.e., with the help of a

domain and in a secure manner using HTTPS protocol. It is used to route traffic into the cluster. The

request first goes to Ingress, which acts as an entry point and forwards the request to the respective

service.

 ConfigMap: ConfigMap is the application's external configuration, a database URL, or any other

service configuration. It is connected to the pod, which gets all the data from the ConfigMap. If the

external configuration changes, one needs to update the ConfigMap; a new build of the entire

application is not needed.

 Secrets: Secrets are like ConfigMap, but they are used to store sensitive information, such as

database credentials, not in plain text format but in a base64-encoded format.

 Volumes: A volume is a physical storage attached to the pod, such as a hard drive. This storage can

either reside on a local machine, meaning it's hosted on the same server node where the pod

operates, or it can be situated on external storage outside of the Kubernetes cluster, such as cloud-

based solutions or on-premise storage systems. The data in the volumes is not ephemeral, meaning

even if the pod connected to it gets restarted, the data is not lost and persists.

 Deployment & Statefulsets: A deployment is a blueprint for a Pod where one specifies the number

of replicas. In practice, one does not work with Pods directly but uses deployments to specify

replicas and scale them up or down. In other words, deployments are a layer of abstraction on top of

the Pods, which makes it convenient to interact with them, replicate them, and do other

configurations easily. Because of multiple Pod replicas, even if one of the application pods dies, the

service would forward the request to another running pod, and the application would still be

accessible to the users. Deployment is for Stateless applications, meaning each request from a client

is processed independently and does not rely on data from previous requests.

 While deployment is a blueprint for Stateless applications, Statefulsets manage stateful

applications that require stable, persistent identities and storage. They are specifically designed for

applications that maintain state across restarts and need predictable network identities or persistent

storage like databases. Statefulsets like deployments take care of replicating the pods, scaling up and

down, but ensure that the database reads and writes are synchronized to find no inconsistencies.

3. Kubernetes Architecture

Worker Node:In Kubernetes terms, a worker node is a simple server, either a physical or virtual machine.

Each node can have multiple pods running on it. Nodes are the cluster servers that do the actual work. Three

processes need to run on every worker node for it to successfully run the pods.

 Container Run-time:As application Pods have containers running inside, a container run-time

needs to be installed on every node. For example, if Docker containers are used, a Docker run-time

environment must be installed on the worker node.

 Kubelet:Kubelet is a process of Kubernetes itself, unlike the container runtime, which schedules

and runs the Pods. It interacts with the time and worker node as it takes the configuration, runs a

Pod with a container inside, and assigns resources from node to container, such as CPU, RAM, etc.

 ISSN: 2249-0558Impact Factor: 7.119

3 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 Kube Proxy:Kube proxy is also a Kubernetes process responsible for forwarding service requests to

Pods and must be installed on all the worker nodes. Kube proxy has an intelligent request

forwarding logic that makes the communication between Pods happen in a performant way. For

example, if one of the replicas of the pod makes a request to another replica of a different Pod,

instead of forwarding the request to any other replica, it forwards it to the replica that is running on

the same worker node as the pod that initiated the request. This would avoid the network overhead

of sending the request to a different machine.

Master Nodes: Master nodes are responsible for interacting with the Kubernetes cluster and managing

actions such as scheduling an application or database pod on a worker node, re-scheduling or restarting a Pod

when they crash, joining a new worker node and adjusting Pods and other components on to the new worker

node when added to the cluster—4 processes run on every master node that control the cluster state.

 API Server: The API Server is a cluster Gateway that gets initial requests of any updates into the

cluster or queries from the cluster. Clients such as Kubernetes dashboard and command line tools

like Kubectl or Kubernetes API can interact with the API Server and deploy a new application in

Kubernetes. API Server also acts as a gatekeeper for authentication, ensuring only authenticated and

authorized requests get through to the rest of the processes to make updates/queries into the cluster.

 Scheduler: The Scheduler is responsible for assigning a worker node when a request to add a new

Pod comes to the cluster via the API Server. Instead of randomly assigning the Kubernetes

component to any worker node, it has an intelligent of deciding the worker node by analyzing the

resource requirements, such as RAM and CPU of the Pod that need to be added, and then goes

through the worker node and computes the available resources in each one of them and picks the

least busy one. In summary, the Scheduler chooses the least busy worker node on which the

component needs to be scheduled.

 Controller Manager: The Controller Manager is responsible for detecting any state changes in a

cluster, such as the crashing of pods, and recovering the cluster state as soon as possible. It recovers

the state of the cluster by requesting the Scheduler to re-schedule the dead Pods, and the entire cycle

of deciding the worker node by Scheduler based on resource requirements and then the actual

starting of Pods by Kubelet repeats.

 etcd:The etcd is the brain of the cluster, saving the cluster data in a key-value store. All the changes

in the cluster, like adding a new pod, deleting a pod, pod crashes, etc., get saved in the etcd's key-

value store. This data will be used by other components, such as the Scheduler to calculate the

resources available on each worker node, the Controller manager to detect the state changes, and the

API Server to handle query requests about the cluster health. Application data is not part of the data

stored in etcd.

 ISSN: 2249-0558Impact Factor: 7.119

4 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

4. Kubectl as a client for interacting with the API Server

Kubectl is the command line tool that serves as the primary interface for interacting with the

Kubernetes cluster's API Server and controlling the entire cluster. It allows users with cluster resource

management, cluster inspection, managing configuration, namespace management, and cluster automation. It

communicates with the Kubernetes API Server using RESTful calls over HTTP/HTTPS. In short, Kubectl is

an invaluable tool for users working with Kubernetes, providing the needed control and flexibility to manage

cluster operations efficiently.

Basic Commands

Command Description

kubectl cluster-info
Displays cluster info, including API endpoints

and other relevant details.

kubectl get nodes Lists all nodes in the cluster.

kubectl get pods Lists all pods in the default namespace.

kubectl get services Lists all services in the default namespace.

kubectl get deployments Lists all deployments in the default namespace.

kubectl get statefulsets Lists all statefulsets in the default namespace.

 ISSN: 2249-0558Impact Factor: 7.119

5 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Working with Pods

Command Description

kubectl run my-pod --image=nginx Creates a pod named my-pod using the Nginx image.

kubectl delete pod my-pod Deletes a specified pod.

kubectl logs my-pod Retrieves logs from a specified pod.

kubectl exec -it my-pod -- /bin/bash
Opens an interactive bash shell inside the specified

pod.

Working with Deployments

Command Description

kubectl create deployment my-deployment --image=nginx
Creates a deployment named my-deployment

using the Nginx image.

kubectl scale deployment my-deployment --replicas=3 Scales the deployment to 3 replicas.

kubectl set image deployment/my-deployment

nginx=nginx:1.16

Updates the Nginx container in the deployment

to use a different version.

kubectl delete deployment my-deployment Deletes a specified deployment.

Working with Services

Command Description

kubectl expose deployment my-deployment --

type=NodePort --port=80

Exposes the deployment as a service accessible

on a node port.

kubectl describe service my-service
Displays detailed information about the specified

service.

5. Kubernetes YAML Configuration File

The K8s YAML Configuration file helps define the desired state of the Kubernetes cluster

components, such as Pods, Services, Deployments, ConfigMaps, Secrets, Volumes, and more. These YAML

configurations are a declarative way of defining and managing the cluster's desired state. The user describes

the final state, and Kubernetes ensures it happens instead of the user imperatively specifying the actions for

Kubernetes to take.

Example YAML configuration file of a Deployment:

apiVersion: apps/v1 # Specifies API Version. apps being the group and v1 being the
version
kind:Deployment# Specifies the type of resource.
metadata:
 name:my-deployment # Name of the deployment.
namespace:my-namespace
 labels:# For identifying and grouping the resources.
 app:my-application
spec:
 replicas:3# No of pods to run as part of the deployment.
 selector:
 matchLabels:# Pods with this label are matched.
 app:my-application
template:# Defines template of the pod.
 metadata:
 labels:
 app:my-application # Labels created for pods by this deployment.
 spec:
 containers:
- name:my-container # Name of the container.
 image: nginx:1.27.1# Docker image.
 ports:
- containerPort:80# Port exposed on container for taking traffic.

 ISSN: 2249-0558Impact Factor: 7.119

6 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

apiVersion: It specifies the Kubernetes API version used by the template file to create or manage resources.

The apiVersion is composed of two components: the group and the version. The version indicates the levels

of stability and support. If the version contains alpha, the software may contain bugs, and the feature may be

dropped in a future release; if the version contains beta, the feature is tested and enabled by default—the

feature will not be dropped, but some details may change.

The first introduced API resources like Pods or Services in Kubernetes do not have groups. So, the template

uses apiVersion: v1. Later, resources are linked to a group. For example, Jobs and Cronjobs are in the

group batch using apiVersion: batch/v1. Deployments and replicasets are in the apps group,

using apiVersion: apps/v1.

kind: It identifies the specific Kubernetes resource being defined, such as a Deployment, Service, Pod,

ConfigMap, or any other resource type supported by Kubernetes. It informs Kubernetes how to handle the

resource. Different resource types have distinct behaviors, rules, and fields associated with them. Kubernetes

relies on kind to determine how to manage and operate the resource.

metadata: It provides the essential information about the resource, such as its name, labels, and annotations.

It helps identify and organize resources within the cluster. The following are key fields of metadata:

 name: Specifies the resource's name, allowing it to be uniquely identified within its namespace.

 labels: Enables categorization and grouping of resources based on key-value pairs. They are widely

used for selecting resources when using selectors or applying deployments.

 annotations: Provides additional information or metadata about the resource. They are typically

used for documentation purposes, tooling integrations, or adding custom metadata.

spec: This contains detailed information that describes the desired state of the resource. The structure and

content of the spec field vary depending on the resource kind. Here are a few examples:

 Pod: It defines the container specifications, such as the image, ports, environment variables, and

volumes.

 Service: It represents the networking rules for the service, including the exposed ports, service type

(e.g., ClusterIP, NodePort, LoadBalancer), and target ports.

 Deployment: It contains details such as the number of replicas, container specifications (e.g.,

image, ports, environment variables), and volume mounts.

status: This section is automatically generated and added by Kubernetes. Kubernetes constantly compares

the desired state to the actual state, and if they do not match, it prompts Kubernetes to bring the current state

to the desired state. This process of self-correcting the state based on the status is the basis for Kubernetes's

self-healing capability.

6. Demo Application Setup with Kubernetes

In this demo setup, two applications, mongo-express and mongoDB, will be deployed using Kubernetes

Components on a minikube. A minikube is a one-node cluster where the master and worker processes run on

one machine. This node will have a docker container run-time pre-installed. In short, a minikube is a one-

node Kubernetes cluster that runs on a virtual box. This is used to test Kubernetes in a local setup. A

command-line tool, kubectl, will interact with the minikube Kubernetes cluster.

Request flow from the browser through the K8s components.

 ISSN: 2249-0558Impact Factor: 7.119

7 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

The following steps are to be taken to set up this application

 A Secret is created to hold the values for MongoDB credentials. These secret values are referenced

in the MongoDB Pod. Hence, the secrets need to be created prior to MongoDB Pods creation. Here,

the secret file ismongo-secret.yaml, and its contents are as follows:

Execute the command kubectl apply -f mongo-secret.yamlto create the secret.

apiVersion: v1
kind:Secret# Specifies the type of resource.
metadata:
 name:my-mongodb-secret # Name given to the secret.
type:Opaque# Default secret type used to store key-value pairs.
data:# Actual contents of key-value pairs.
 mongo-root-username:YWRtaW4=
 mongo-root-password: cGFzcw==

 A MongoDB pod is created; we need a service component to route traffic to the pod. An Internal

Service will be created, which means no external requests are allowed to the pod, and only

components within the same cluster can communicate with the MongoDB Pod. The specification for

a Pod and its service can coexist in a single yaml file. The contents of this file, mongo.yaml are

shown below.

Execute the command kubectl apply -f mongo.yaml to create the MongoDB Pod and the mongo-

service linked to the pod.

apiVersion: apps/v1 # Specifies API Version.
kind:Deployment# Specifies the type of resource as Deployment
metadata:
 name:my-mongodb
 labels:
 app:my-mongodb
spec:
 replicas:1# Specifies no of pods to be created with Deployment.
 selector:
 matchLabels:
 app:my-mongodb
template:
 metadata:
 labels:
 app:my-mongodb
 spec:
 containers:
- name:my-mongodb
 image: mongo # Specifies the container image.
 ports:
- containerPort:27017# Port on which a container listens for network traffic.
 env:
- name: MONGO_INITDB_ROOT_USERNAME
 valueFrom:# Pulls environment values dynamically and avoids hardcoding.
 secretKeyRef:
 name:my-mongodb-secret # Name of the secret file where the
values are being pulled.
 key: mongo-root-username # Key in which username is stored in
the secret file.
- name: MONGO_INITDB_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name:my-mongodb-secret
 key: mongo-root-password # Key in which password is stored in
the secret file.

apiVersion: v1
kind:Service# Specifies the type of resource as Service.
metadata:
 name:my-mongodb-service
spec:
 selector:
 app:my-mongodb # Connects to the pod with name my-
mongodb.

 ISSN: 2249-0558Impact Factor: 7.119

8 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 ports:
- protocol: TCP
 port:27017# Exposes service port.
 targetPort:27017# Should match containerPort of Deployment.

 The MongoExpress Pod references a MongoDB URL to connect to the Mongo database. It can be

externalized as an environment variable in a ConfigMap. Here, the ConfigMap file is mongo-

configmap.yamland its contents are as follows:

Execute the command kubectl apply -f mongo-config.yamlto create the secret.

apiVersion: v1
kind:ConfigMap# Specifies the type of resource as ConfigMap
metadata:
 name:my-mongodb-configmap
data:
 database_url:my-mongodb-service # Refers to mongo service to route traffic to
MongoDB.

 A MongoExpress deployment is created. A MongoDB URL is needed so Mongo Express can

connect to the database. Along with the URL, a set of MongoDB credentials, i.e., username and

password, is needed to authenticate to the database. These values are provided via ConfigMap and

Secret. An external service is created so that MongoExpress is accessible via the browser. This

external service will allow external requests to communicate with the pod.

Execute the command kubectl apply -f mongo-express.yaml to create the MongoExpress Pod and

the mongo-express-service linked to the pod.

apiVersion: apps/v1 # Specifies API Version.
kind:Deployment# Specifies the type of resource as Deployment
metadata:
 name:my-mongo-express
 labels:
 app:my-mongo-express
spec:
 replicas:1# Specifies no of pods to be created with Deployment.
 selector:
 matchLabels:
 app:my-mongo-express
template:
 metadata:
 labels:
 app:my-mongo-express
 spec:
 containers:
- name:my-mongo-express
 image: mongo-express # Specifies the container
image.
 ports:
- containerPort:8081
 env:
- name: ME_CONFIG_MONGODB_ADMINUSERNAME
 valueFrom:# Pulls environment values dynamically and avoids hardcoding.
 secretKeyRef:
 name:my-mongodb-secret # Name of the secret file
where the values are being pulled.
 key: mongo-root-username # Key in which username is
stored in the secret file.
- name: ME_CONFIG_MONGODB_ADMINPASSWORD
 valueFrom:
 secretKeyRef:
 name:my-mongodb-secret
 key: mongo-root-password # Key in which password is
stored in the secret file.
- name: ME_CONFIG_MONGODB_SERVER
 valueFrom:
 configMapKeyRef:

 ISSN: 2249-0558Impact Factor: 7.119

9 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

 name:my-mongodb-configmap # Name of the configmap file
where the db url is being pulled.
 key: database_url

apiVersion: v1
kind:Service
metadata:
 name:my-mongo-express-service
spec:
 selector:
 app:my-mongo-express
 type:LoadBalancer
 ports:
- protocol: TCP
 port:8081
 targetPort:8081
 nodePort:30000

 The my-mongo-express-service created after the deployment is of type LoadBalancer. By default, it

is assigned an internal IP address. However, to allow external requests to reach the my-mongo-

express pod within the Kubernetes cluster, an external IP address must be enabled for the

LoadBalancer. The following command can be used to assign an external IP to the LoadBalancer.

minikube service my-mongo-express-service

7. Conclusion

In conclusion, we have seen Kubernetes's components, architecture, and features and deployed a demo

application in the Kubernetes cluster. Its robust architecture simplifies the complexities of deploying and

scaling applications across various environments. Its self-healing capabilities were also discussed, i.e.,

automatically detecting and recovering from failures powered by continuous status checks and etcd data

store. While this paper lays the foundation for understanding Kubernetes fundamentals, the platform offers

more capabilities like enhanced security, persistent storage, network policies, etc. These can be further

explored on a case-by-case basis.

8. References

 Kubernetes Official Website. (2024, October 13). Kubernetes basics. Retrieved from

https://kubernetes.io/docs/tutorials/kubernetes-basics/

 The Cloud Native Computing Foundation. (2024, October 13). Kubernetes. Retrieved from

https://www.cncf.io/projects/kubernetes/

 Red Hat. (2024, October 13). Kubernetes architecture. Retrieved from

https://www.redhat.com/en/topics/containers/what-is-kubernetes

 Google Cloud. (2024, October 13). Kubernetes Engine documentation. Retrieved from

https://cloud.google.com/kubernetes-engine/docs

